Abstract

Crocetin esters present in saffron (Crocus sativus L.) stigmas and in Gardenia jasminoides Ellis fruit are the compounds responsible for their color. Of the fifteen crocetin esters identified in this study, five new compounds were tentatively identified: trans and cis isomers of crocetin (beta-D-triglucoside)-(beta-D-gentibiosyl) ester, trans and cis isomers of crocetin (beta-D-neapolitanose)-(beta-D-glucosyl) ester, and cis crocetin (beta-D-neapolitanose)-(beta-D-gentibiosyl) ester. The most relevant differences between both species were a low content of the trans crocetin (beta-D-glucosyl)-(beta-D-gentibiosyl) ester, the absence of trans crocetin di-(beta-D-glucosyl) ester in gardenia, and its higher content of trans crocetin (beta-D-gentibiosyl) ester and cis crocetin di-(beta-D-gentibiosyl) ester. With the same chromatographic method it was possible to identify, in a single run, ten glycosidic compounds in saffron extracts with a UV/vis pattern similar to that of picrocrocin; among them, 5-hydroxy-7,7-dimethyl-4,5,6,7-tetrahydro-3H-isobenzofuranone 5-O-beta-D-gentibioside and 4-hydroxymethyl-3,5,5-trimethyl-cyclohexen-2-one 4-O-beta-D-gentibioside were tentatively identified for the first time in saffron. Of these ten glycosides, only the O-beta-D-gentibiosyl ester of 2-methyl-6-oxo-2,4-hepta-2,4-dienoic acid was found in gardenia samples, but it was possible to identify the iridoid glycoside, geniposide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call