Abstract

To combine the advantages of chromium nitride (CrN) and amorphous carbon (a-C) film, this study proposes a novel Cr–N–C multilayer film on 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs) using closed field unbalanced magnetron sputter ion plating (CFUBMSIP) method. The characterizations of Cr–N–C film are analyzed by X-ray photoelectron spectroscopy (XPS), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). Scratch tests indicate that the adhesion strength between the film and SS316L substrate has been greatly improved which is beneficial to prevent the multilayer film from spalling. Interfacial contact resistance (ICR) between coated SS316L sheets and simulated gas diffusion layer (GDL) decreases to 2.64 mΩ cm2 at 1.4 MPa. Potentiodynamic results reveal that the anodic corrosion potential of coated samples is more positive than the operation potential and the cathodic passivation current density is only 0.61 μA cm−2 at 0.6 V. Potentiostatic test, contamination analysis and surface morphology results reveal that the substrate is well protected by the Cr–N–C film. This research demonstrates that the novel Cr–N–C film exhibits excellent ex-situ performance including strong adhesion strength, high corrosion resistance and low ICR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.