Abstract

The yAP-1 transcription factor is crucial for the oxidative stress response of the budding yeast Saccharomyces cerevisiae; its activity is induced in response to oxidative stress, and as a consequence the expression of a number of target genes is enhanced. We have shown previously that yAP-1 is mainly found in the cytoplasm, but that upon the imposition of oxidative stress it localizes to the nucleus. In this study, we addressed the mechanism through which yAP-1 nuclear localization is regulated. Here we show that yAP-1 localization is mediated by active export from the nucleus, resulting from the activity of Crm1 (XpoI), a conserved protein that functions as an export receptor which recognizes the nuclear export signal (NES). When Crm1 expression was repressed, yAP-1 was localized in the nucleus and induced the expression of a yAP-1 dependent target gene. Our results also suggest that the cysteine rich domain (CRD), at the C-terminus of yAP-1, functions as an export recognition sequence. yAP-1 and Crm1 interact in vivo and this interaction is reduced in response to oxidative stress. These results suggest a novel regulatory mechanism of nucleocytoplasmic transport which is dependent upon a redox sensitive nuclear export pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.