Abstract

A \(2\)-rainbow dominating function of a graph \(G\left(V(G),E(G)\right)\) is a function \(f\) that assigns to each vertex a set of colors chosen from the set \(\{1,2\}\) so that for each vertex with \(f(v)=\emptyset\) we have \({\textstyle\bigcup_{u\in N(v)}} f(u)=\{1,2\}\). The weight of a \(2\)RDF \(f\) is defined as \(w\left( f\right)={\textstyle\sum\nolimits_{v\in V(G)}} |f(v)|\). The minimum weight of a \(2\)RDF is called the \(2\)-rainbow domination number of \(G\), denoted by \(\gamma_{2r}(G)\). The vertex criticality index of a \(2\)-rainbow domination of a graph \(G\) is defined as \(ci_{2r}^{v}(G)=(\sum\nolimits_{v\in V(G)}(\gamma_{2r}\left(G\right) -\gamma_{2r}\left( G-v\right)))/\left\vert V(G)\right\vert\), the edge removal criticality index of a \(2\)-rainbow domination of a graph \(G\) is defined as \(ci_{2r}^{-e}(G)=(\sum\nolimits_{e\in E(G)}(\gamma_{2r}\left(G\right)-\gamma_{2r}\left( G-e\right)))/\left\vert E(G)\right\vert\) and the edge addition of a \(2\)-rainbow domination criticality index of \(G\) is defined as \(ci_{2r}^{+e}(G)=(\sum\nolimits_{e\in E(\overline{G})}(\gamma_{2r}\left(G\right)-\gamma_{2r}\left( G+e\right)))/\left\vert E(\overline{G})\right\vert\), where \(\overline{G}\) is the complement graph of \(G\). In this paper, we determine the criticality indices of paths and cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call