Abstract

We study the emergence of critical dynamics in the steady shear rheology of fluidized soft glassy materials. Within a mesoscale elastoplastic model accounting for a shear band instability, we show how additional noise can induce a transition from a phase separated to homogeneous flow, accompanied by critical-like fluctuations of the macroscopic shear rate. Both macroscopic quantities and fluctuations exhibit power law behaviors in the vicinity of this transition, consistent with previous experimental findings on vibrated granular media. Altogether, our results suggest a generic scenario for the emergence of criticality when shear weakening mechanisms compete with a fluidizing noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call