Abstract
This work presents the TENSOR (clusTEriNg terroriSm actiOn pRediction) framework, a near real-time reasoning framework for early identification and prediction of potential threat situations (e.g. terrorist actions). The framework consists of three different modules with the aim of collecting and processing information of the surrounding environment from a variety of sources including physical sensors (e.g. surveillance cameras) and humans (e.g. police officers). The main objective of TENSOR is to show how patterns of strategic terroristic behaviors, identified analyzing large longitudinal data sets, can be linked to short term activity patterns identified analyzing feeds by “usual” surveillance technologies and that this fusion allows a better detection of terrorist threats. This information is processed at different abstraction levels and, thru the proposed layered architecture, TENSOR simulates the three main expert user roles (i.e. operational, tactical and strategic user roles), as indicated in the intelligence analysis domain literature. TENSOR transforms all the sensors gathered data into symbolic events of interest following a generic scenario-agnostic semantics for terrorist attacks described in literature as terrorist indicators. Thru different reasoning and fusion techniques, the framework proactively detects threats and depicts the situation in near real-time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Ambient Intelligence and Humanized Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.