Abstract

Experimental observations of animal collective behaviour have shown stunning evidence for the emergence of large-scale cooperative phenomena resembling phase transitions in physical systems. Indeed, quantitative studies have found scale-free correlations and critical behaviour consistent with the occurrence of continuous, second-order phase transitions. The standard Vicsek model (SVM), a minimal model of self-propelled particles in which their tendency to align with each other competes with perturbations controlled by a noise term, appears to capture the essential ingredients of critical flocking phenomena. In this paper, we review recent finite-size scaling and dynamical studies of the SVM, which present a full characterization of the continuous phase transition through dynamical and critical exponents. We also present a complex network analysis of SVM flocks and discuss the onset of ordering in connection with XY-like spin models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.