Abstract

This study is concerned with assessing the integrity of cracked steam turbine rotors components which operate under cyclic loading conditions. Damage accumulation and growth have occurred on the inner surface of slot fillet of key and in a disk and blade rivet attachment. Full-size stress-strain state analysis of turbine disk was performed for different stage of lifetime under considering loading conditions. As a result accumulated damage in critical zones of turbine disks depending on time of loading is defined. The tensile tests were performed for determination the main mechanical properties of disk’s material after loading history. The smooth and notched specimens were cut out from critical zones of turbine disk with given operating time. The low-cycle fatigue tests were performed with the harmonic test-cycle. Additional tests were performed on special designed program test-cycle, which equivalent to start-stop cycle of turbine disk. An engineering approach to the prediction of residual lifetime of turbine disks which is sensitive to the loading history at maintenance is proposed. Approximate estimations of carrying capacity are presented for the different stress-strain state of steam turbine disks at the operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.