Abstract

Accurately predicting the formation, development and dissipation of fog and low stratus (LS) still poses a challenge for numerical weather prediction (NWP) models. Errors in the low cloud cover NWP forecasts directly impact the quality of photovoltaic (PV) power prediction. On days with LS, day-ahead forecast errors of Germany-wide PV power frequently lie within the magnitude of the balance energy and thus pose a challenge for maintaining grid stability. An indication in advance about the possible occurrence of a critical weather situation such as LS would represent a helpful tool for transmission system operators (TSOs) in their day-to-day business. In the following, a detection algorithm for low stratus risk (LSR) is developed and applied as post-processing to the NWP model forecasts of the regional non-hydrostatic model COSMO-DE, operational at the German Weather Service. The aim of the LSR product is to supply day-ahead warnings and to support the decision making process of the TSOs. The quality of the LSR is assessed by comparing the computed regions of LSR occurrence with a satellite based cloud classification product from the Nowcasting Satellite Facility (NWCSAF). The results show that the LSR provides additional information that should in particular be useful for risk adverse users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.