Abstract

We study the critical vortex shedding in a strongly interacting fermionic superfluid of ^{6}Li across the BEC-BCS crossover. By moving an optical obstacle in the sample and directly imaging the vortices after the time of flight, the critical velocity u_{vor} for vortex shedding is measured as a function of the obstacle travel distance L. The observed u_{vor} increases with decreasing L, where the rate of increase is the highest in the unitary regime. In the deep Bose-Einstein condensation regime, an empirical dissipation model well captures the dependence of u_{vor} on L, characterized by a constant value of η=-[d(1/u_{vor})/d(1/L)]. However, as the system is tuned across the resonance, a step increase of η develops about a characteristic distance L_{c} as L is increased, where L_{c} is comparable to the obstacle size. This bimodal behavior is strengthened as the system is tuned towards the BCS regime. We attribute this evolution of u_{vor} to the emergence of the underlying fermionic degree of freedom in the vortex-shedding dynamics of a Fermi condensate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call