Abstract

Critical velocities of a two-layer composite tube under a uniform internal pressure moving at a constant velocity are analytically determined. The formulation is based on a Love–Kirchhoff thin shell theory that incorporates the rotary inertia and material anisotropy. The composite tube consists of two perfectly bonded axisymmetric circular cylindrical layers of dissimilar materials, which can be orthotropic, transversely isotropic, cubic or isotropic. Closed-form expressions for the critical velocities and radial displacement of the two-layer composite tube are first derived for the general case by including the effects of material anisotropy, rotary inertia and radial stress. The formulas for composite tubes without the rotary inertia effect and/or the radial stress effect and with various types of material symmetry for each layer are then obtained as special cases. In addition, it is shown that the model for single-layer, homogeneous tubes can be recovered from the current model as a special case. To illustrate the new model, a composite tube with an isotropic inner layer and an orthotropic outer layer is analyzed as an example. All four critical velocities of the composite tube are calculated using the newly derived closed-form formulas. Six values of the lowest critical velocity of the two-layer composite tube are computed using three sets of the new formulas, which compare fairly well with existing results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.