Abstract

We consider the critical values of symmetric power L-functions attached to elliptic curves over Q. We show how to calculate a canonical Deligne period, and in several numerical examples, especially for sixth and tenth powers, we examine the factorisation of the rational number apparently obtained when one divides the critical value by the canonical period. This seems to provide some support for the Bloch-Kato conjecture, when we com- pare it with calculations and bounds for Tamagawa factors and global torsion terms. For large odd powers (5th-9th), we see several examples fitting well with the squareness of the order of the Shafarevich-Tate group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.