Abstract
The assumption of local independence is central to all item response theory (IRT) models. Violations can lead to inflated estimates of reliability and problems with construct validity. For the most widely used fit statistic Q3, there are currently no well-documented suggestions of the critical values which should be used to indicate local dependence (LD), and for this reason, a variety of arbitrary rules of thumb are used. In this study, an empirical data example and Monte Carlo simulation were used to investigate the different factors that can influence the null distribution of residual correlations, with the objective of proposing guidelines that researchers and practitioners can follow when making decisions about LD during scale development and validation. A parametric bootstrapping procedure should be implemented in each separate situation to obtain the critical value of LD applicable to the data set, and provide example critical values for a number of data structure situations. The results show that for the Q3 fit statistic, no single critical value is appropriate for all situations, as the percentiles in the empirical null distribution are influenced by the number of items, the sample size, and the number of response categories. Furthermore, the results show that LD should be considered relative to the average observed residual correlation, rather than to a uniform value, as this results in more stable percentiles for the null distribution of an adjusted fit statistic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.