Abstract

Critical topological phases, possessing flat bands, provide a platform to study unique topological properties and transport phenomena under a many-body effect. Here, we propose that critical nodal points and nodal lines or rings can be found in Kagome lattices. After the C3 rotation symmetry of a single-layer Kagome lattice is eliminated, a quadratic nodal point splits into two critical nodal points. When the layered Kagome lattices are stacked into a three-dimensional (3D) structure, critical nodal lines or rings can be generated by tuning the interlayer coupling. Furthermore, we use Kagome graphene as an example to identify that these critical phases could be obtained in real materials. We also discuss flat-band-induced ferromagnetism. It is found that the flat band splits into two spin-polarized bands by hole-doping, and as a result the Dirac-type critical phases evolve into Weyl-type phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.