Abstract
This paper is concerned with the critical threshold phenomenon for one-dimensional damped, pressureless Euler–Poisson equations with electric force induced by a constant background, originally studied in [S. Engelberg and H. Liu and E. Tadmor, Indiana Univ. Math. J. 50 (2001) 109–157]. A simple transformation is used to linearize the characteristic system of equations, which allows us to study the geometrical structure of critical threshold curves for three damping cases: overdamped, underdamped and borderline damped through phase plane analysis. We also derive the explicit form of these critical curves. These sharp results state that if the initial data is within the threshold region, the solution will remain smooth for all time, otherwise it will have a finite time breakdown. Finally, we apply these general results to identify critical thresholds for a non-local system subjected to initial data on the whole line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.