Abstract
We provide a complete description of the critical threshold phenomenon for the two-dimensional localized Euler-Poisson equations, introduced by the authors in [Comm. Math. Phys., 228 (2002), pp. 435-466]. Here, the questions of global regularity vs. finite-time breakdown for the two-dimensional (2D) restricted Euler-Poisson solutions are classified in terms of precise explicit formulae, describing a remarkable variety of critical threshold surfaces of initial configurations. In particular, it is shown that the 2D critical thresholds depend on the relative sizes of three quantities: the initial density, the initial divergence, and the initial spectral gap, that is, the difference between the two eigenvalues of the 2 × 2 initial velocity gradient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.