Abstract

Representation connection (RC) is a stable ability that significantly predicts the accuracy of scientific innovation problem solving while critical thinking has been strongly related to problem solving. However, the neural mechanisms underlying this relationship have not been assessed. Using voxel-based morphometry (VBM) and scientific innovation problem solving materials, we investigated the correlation between RC and regional gray matter volume (rGMV) in healthy young participants. We found that RC was positively correlated with rGMV in the right superior temporal gyrus (STG) and in a cluster in the left medial frontal gyrus (MFG). These results indicate that increased rGMV in the right STG may lead to the ability to overcome misdirection more easily, which may result in better semantic integration of the "certain construction" of heuristic prototypes. Increased rGMV in the left MFG may be associated with forming novel associations and retrieving matched unsolved technical problems from memory. Further analysis revealed that the interaction between critical thinking and rGMV predicted RC in insightful problem solving, and found that higher rGMV was correlated with higher RC in participants with lower cognitive maturity, but not in participants with higher cognitive maturity. These findings suggest that rGMV could interact with cognitive maturity to modulate RC in insightful problem solving.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call