Abstract

We report on the critical thickness for InAs quantum dot (QD) formation on (311)B InP substrates. Firstly, critical thicknesses for InAs QD formation on InP surfaces have been measured by reflection high-energy electron diffraction. Large change of the critical thickness has been observed as a function of substrate temperature. We assume that is related to large As/P exchange on InP surface which leads to the formation of extra InAs on surface. Then, change of critical thickness during QD stacking has been investigated. When capping layers were grown continuously a large decrease of the critical thickness was observed as a function of the number of QD layers. In contrast, when capping layers were grown in two steps (double cap procedure) a nearly constant critical thickness was measured. We propose an explanation based on stress-driven mass transport and As/P exchange on InP surface to interpret such results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.