Abstract

A model based on the overall energy balance is used to calculate the critical thickness for an InGaN epitaxial layer on a GaN substrate. The critical thickness values as a function of the indium content are found to be lower than values predicted by models proposed by Fischer or People and Bean. We also used the energy balance model to estimate the effect of the hexagonal symmetry of wurtzite materials on the critical thickness; this results in reduction of the critical thickness by as much as 20% of its corresponding isotropic value. From the small amount of experimental data available we conclude that the energy balance model is more appropriate for describing the critical thickness of the InGaN/GaN material system than the models developed by Fischer or People and Bean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.