Abstract

We studied the effect of intraspecific hybridization on swimming performance in sterlet, hypothesizing that such hybridization increases the performance by inducing the hybrid vigor. A total of 12 purebred and hybrid crosses were reproduced from Danube (D) and Volga (V) populations of Acipenser ruthenus. Within each cross, one group of fish was exposed to temperature challenges mimicking the temperature variation in the natural environment during summer. Temperature challenges comprised a constant increase from 19°C to 24°C and then return to 19°C within 12 hr (dT<1°C/hr), and were carried out every third day over the experimental period of 20 days. As a control, fish from each cross were kept at a constant temperature of 19°C. Critical swimming speed (Ucrit) was assessed on day 0 (29 days post hatch, dph), 10 (39 dph) and 20 (49 dph). The critical swimming speeds ranged from 5.12 cm/s (1.63 TL/s) to 16.44 cm/s (2.4 TL/s) during the experimental period (29–49 dph). There were no significant differences observed in Ucrit between repeatedly temperature challenged and control groups, indicating that the temperature challenge did not alter the swimming performance. The critical swimming speed showed positive relationship with total body length. Comparing intraspecific hybrid crosses with purebred crosses, no significant difference in swimming performance was observed. It is thus concluded that swimming performance is a family specific trait. There is no indication that intraspecific hybridization affects swimming performance nor that close-to-natural temperature regimes increase swimming performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call