Abstract

This study examines the critical surface energy of manganese sulfite (MnSO[Formula: see text] crystalline thin film, produced via chemical bath deposition (CBD) on substrates. In addition, parachor, which is an important parameter of chemical physics, and its relationship with grain size, film thickness, etc., has been investigated for thin films. For this purpose, MnSO3 thin films were deposited at room temperature using different deposition times. Structural properties of the films, such as film thickness and average grain size, were examined using X-ray diffraction; film thickness and surface properties were measured by and atomic force microscope; and critical surface tension of MnSO3 thin films was measured with Optical Tensiometer and calculated using Zisman method. The results showed that critical surface tension and parachor of the films have varied with average grain size and film thickness. Critical surface tension was calculated as 32.97, 24.55, 21.03 and 12.76[Formula: see text]mN/m for 14.66, 30.84, 37.07 and 44.56[Formula: see text]nm grain sizes, respectively. Film thickness and average grain size have been increased with the deposition time and they were found to be negatively correlated with surface tension and parachor. The relationship between film thickness and parachor was found as [Formula: see text] whereas the relationship between average grain size and parachor was found as [Formula: see text] We also showed the relationships between parachor and some thin films parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call