Abstract

We investigate the superfluid properties of a dipolar Bose-Einstein condensate (BEC) in a fully three-dimensional trap. Specifically, we estimate a superfluid critical velocity for this system by applying the Landau criterion to its discrete quasiparticle spectrum. We test this critical velocity by direct numerical simulation of condensate depletion as a blue-detuned laser moves through the condensate. In both cases, the presence of the roton in the spectrum serves to lower the critical velocity beyond a critical particle number. Since the shape of the dispersion, and hence the roton minimum, is tunable as a function of particle number, we thereby propose an experiment that can simultaneously measure the Landau critical velocity of a dipolar BEC and demonstrate the presence of the roton in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call