Abstract

In the distribution transformers design oval windings are used due to economic advantages. On the other hand, such windings are more susceptible to radial forces in a short circuit. A diamond dotted paper with an epoxy coating is used in order to increase the stiffness of the winding. Despite that, winding failure may occur during the short circuit, e.g. buckling of inner winding. Because of a very thin foil conductor (typically 0.5–2 mm), the most critical is inner low voltage foil winding which can collapse due to radial forces at stresses far below the elastic limit of conductor material. This paper shows an analytical approach to the calculation of critical stress in inner oval foil winding with epoxy coated insulation. Critical stress was calculated using the equation for free buckling of round winding. Equivalent Young's modulus of elasticity was obtained experimentally from the testing of the sample model loaded with bending force on a tensile test machine. A total of 12 test samples were formed from aluminium foil conductor and diamond dotted paper and cured at the temperature of 105°C. The results were successfully verified on distribution transformers subjected to short circuit withstand tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.