Abstract

The surface processes that control crystal growth from solution can be probed in real-time by in situ microscopy. However, when mass transport (partly) limits growth, the interfacial solution conditions are difficult to determine, precluding quantitative measurement. Here, we demonstrate the use of a thermodynamic feature of crystal surfaces—the critical step length—to convey the local supersaturation, allowing the surface-controlled kinetics to be obtained. Applying this method to atomic force microscopy measurements of calcite, which are shown to fall within the regime of mixed surface/transport control, unites calcite step velocities with the Kossel–Stranski model, resolves disparities between growth rates measured under different mass transport conditions, and reveals why the Gibbs–Thomson effect in calcite departs from classical theory. Our approach expands the scope of in situ microscopy by decoupling quantitative measurement from the influence of mass transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call