Abstract

We report on the dramatic slowing down of the charge carrier dynamics in a quasi-two-dimensional organic conductor, which can be reversibly tuned through the Mott metal-insulator transition (MIT). At the finite-temperature critical end point, we observe a divergent increase of the resistance fluctuations accompanied by a drastic shift of spectral weight to low frequencies, demonstrating the critical slowing down of the order parameter (doublon density) fluctuations. The slow dynamics is accompanied by non-Gaussian fluctuations, indicative of correlated charge carrier dynamics. A possible explanation is a glassy freezing of the electronic system as a precursor of the Mott MIT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.