Abstract

The nanoscale shear band operation process of Zr55 Pd10 Cu20 Ni5 Al10 metallic glass (MG) was reined in by constant force during well-designed loading-holding-unloading cyclic microcompression test. Through the test, it is revealed that the whole shear banding process involves three stages: shear band initiation, shear sliding and shear band arrest. Based on the energy balance principle, the size-affected speed of shear sliding is interpreted. The energy originated from the shear sliding leads to heat-up of the shear plane; therefore, the temperature in shear band increases with the size of shear offset caused by the energy accumulation during shear sliding. Taking the glass transition temperature as the critical temperature of fracture for the Zr-based MG, the critical shear offset is predicted to be approximately 190 μm, fully in line with the experimental observation. This directly proved that the fracture of the MG is caused by the temperature rise during shear sliding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.