Abstract
A lower estimate for the number of different invariant subsets of the set of nonwandering points for a class of unimodal mappings is given. Sufficient conditions for such a mapping to have periodic points of arbitrarily large period are described. The machinery of the appearance of such points may be of very different nature. The existence of mappings with trajectory behavior chaotic in the Li-York sense is established. Conditions for the domain of these trajectories to be arbitrary small are given. Therefore, such trajectories cannot be found by numerical methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.