Abstract

Generalized phase transition (GPT) refers to the transition process of material systems from one steady-state to another. It includes equilibrium phase transition (EPT) and nonequilibrium phase transition (NPT), and phase transitions intermediate between them. In this paper some results on the study of critical scaling relations of the NPT and EPT are obtained. We developed the critical scaling theory of EPT and advanced a universal critical scaling theory of GPT. The critical scaling relations(scaling laws) has more niversality. The critical exponents calculated from our theory are identical with the results of experiments and other theories about EPT and NPT systems. Because the basic model of the theory does not depend on the concrete material system, it has a certain unversality. Its results thus can be applied to generlized phase transition systems, such as the electrorheological fluid and magnetorheological fluid systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.