Abstract

Previous studies have suggested that the loss of the translation initiation factor eIF4G1 homolog NAT1 induces excessive self-renewability of naive pluripotent stem cells (PSCs); yet the role of NAT1 in the self-renewal and differentiation of primed PSCs is still unclear. Here, we generate a conditional knockout of NAT1 in primed PSCs and use the cells for the functional analyses of NAT1. Our results show that NAT1 is required for the self-renewal and neural differentiation of primed PSCs. In contrast, NAT1 deficiency in naive pluripotency attenuates the differentiation to all cell types. We also find that NAT1 is involved in efficient protein expression of an RNA uridyltransferase, TUT7. TUT7 is involved in the neural differentiation of primed PSCs via the regulation of human endogenous retrovirus accumulation. These data demonstrate the essential roles of NAT1 and TUT7 in the precise transition of stem cell fate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.