Abstract

Myelopoiesis is necessary for the generation of mature myeloid cells during homeostatic turnover and immunological insults; however, the metabolic requirements for this process remain poorly defined. Here, we demonstrate that myelopoiesis, including monocyte and macrophage differentiation, requires mechanistic target of rapamycin complex 1 (mTORC1) signaling and anabolic metabolism. Loss of mTORC1 impaired myelopoiesis under steady state and dampened innate immune responses against Listeria monocytogenes infection. Stimulation of hematopoietic progenitors with macrophage colony-stimulating factor (M-CSF) resulted in mTORC1-dependent anabolic metabolism, which in turn promoted expression of M-CSF receptor and transcription factors PU.1 and IRF8, thereby constituting a feed-forward loop for myelopoiesis. Mechanistically, mTORC1 engaged glucose metabolism and initiated a transcriptional program involving Myc activation and sterol biosynthesis after M-CSF stimulation. Perturbation of glucose metabolism or disruption of Myc function or sterol biosynthesis impaired myeloid differentiation. Integrative metabolomic and genomic profiling further identified one-carbon metabolism as a central node in mTORC1-dependent myelopoiesis. Therefore, the interplay between mTORC1 signaling and metabolic reprogramming underlies M-CSF-induced myelopoiesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.