Abstract

Most high-performance all-polymer solar cell systems employ donor polymers with side groups containing bulky aromatic units. The rationale behind the use of bulky side groups in efficient all-polymer systems, however, is not well-understood. In this study, we investigate the doubling of power conversion efficiency in all-polymer solar cells that occurs when substituting the pendant oxygen group in polymer donor PTB7 for thiophene. Specifically, polymer blends using either PTB7 or PTB7-Th as donor with P(NDI2OD-T2) as acceptor are compared. We comprehensively examine the photophysics, morphology, and device physics of these two systems and find that PTB7-Th:P(NDI2OD-T2) blends have suppressed geminate recombination and improved charge collection efficiencies compared to PTB7:P(NDI2OD-T2) blends. While the switching of oxygen for thiophene does not have a dramatic effect on blend morphology, the bulky side group in PTB7-Th helps to destabilize the interfacial charge transfer state, with 5-fold higher hole m...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.