Abstract

BackgroundThe physiological function of p38α, which is an isoform of p38 MAPK, has been investigated previously in several studies using pharmacological inhibitors. However, the results regarding whether p38α promotes or inhibits nerve regeneration in vivo have been controversial.MethodsWe generated novel p38α mutant mice (sem mice) with a point mutation in the region encoding the p38α substrate-docking-site, which serves as a limited loss-of-function model of p38α. In the present study, we utilized sem mice and wild-type littermates (wt mice) to investigate the physiological role of p38α in nerve regeneration following crush injuries.ResultsAt four weeks after crush injury, the average axon diameter and the average axon area in sem mice were significantly smaller than those in wt mice. The average myelin sheath thickness in sem mice was reduced compared to wt mice, but no significant difference was observed in the G-ratio between the two groups. The sciatic functional index value demonstrated that functional nerve recovery in sem mice following crush injury was delayed, which is consistent with the histological findings. To investigate the underlying mechanisms of these findings, we examined inflammatory responses of the sciatic nerve by immunohistochemistry and western blotting. At an early phase following crush injury, sem mice showed remarkably lower expression of inflammatory cytokines, such as TNF-α and IL-1β, than wt mice. The expression of Caspase-3 and Tenascin-C were also lower in sem mice. Conversely, at a late phase of the response, sem mice showed considerably higher expression of TNF-α and of IL-1β with lower expression of S-100 than wt mice.ConclusionsThis is the first study of the physiological role of p38 MAPK in nerve regeneration that does not rely on the use of pharmacological inhibitors. Our results indicate that p38α insufficiency may cause an inflammatory disorder, resulting in a delay of histological and functional nerve recovery following crush injury. We conclude that p38 MAPK has an important physiological role in nerve regeneration and may be important for controlling both initiation of inflammation and recovery from nerve injury.

Highlights

  • The physiological function of p38α, which is an isoform of p38 Mitogen-activated protein kinase (MAPK), has been investigated previously in several studies using pharmacological inhibitors

  • The average myelin sheath thickness in sem mice was significantly reduced after crush injury compared to wt mice (P < 0.05), no significant differences were observed in the axon number, density and G-ratio between the two groups (Table 1)

  • These findings suggest that inhibition of p38α influences nerve regeneration rather than neural development

Read more

Summary

Introduction

The physiological function of p38α, which is an isoform of p38 MAPK, has been investigated previously in several studies using pharmacological inhibitors. It has been reported that expression of cytokines, including pro- and antiinflammatory cytokines, are controlled in a highly ordered fashion during Wallerian degeneration and subsequent regeneration in the peripheral nerve system [2,3]. Of these pro-inflammatory cytokines, TNF-α is upregulated early and transiently at the site of nerve injury and is considered to play a crucial role in the process of Wallerian degeneration as an initiator of local inflammatory responses [2,4]. Further understanding of the cell and molecular program controlling the expression of inflammatory cytokines following nerve injuries is important in order to devise ways to promote nerve regeneration

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.