Abstract

Medullary thymic epithelial cells (mTECs) play a central role in the establishment of T cell central immunological tolerance by promiscuously expressing tissue-restricted antigens (TRAs) and presenting them to developing T cells, leading to deletion of T cells responding to self-antigens. However, molecular mechanisms especially epigenetic regulation of mTEC homeostasis and TRA expression remain elusive. Here we show that the H3K27 demethylase Kdm6b is essential to maintain the postnatal thymic medulla by promoting mTEC survival and regulating the expression of TRA genes. Moreover, mice lacking Kdm6b developed pathological autoimmune disorders. Mechanically, Kdm6b exerted its function by reducing repressive H3K27 trimethylation (H3K27me3) at the promoters of anti-apoptotic gene Bcl2 and a set of Aire-dependent TRA genes. Thus, our findings reveal a dual role of Kdm6b in the regulation of mTEC-mediated T cell central tolerance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.