Abstract

BackgroundDeveloping brain is highly susceptible to hypoxic-ischemic injury leading to severe neurological disabilities in surviving infants and children. Previously we reported induction of neuronal pentraxin 1 (NP1) in hypoxic-ischemic injury in neonatal brain and NP1 co-localization with the excitatory AMPA receptors GluR1 at the synaptic sites. However, how NP1 contributes to hypoxic-ischemic neuronal injury is not completely understood.ResultsHere we report that extracellular secretion of NP1 is required for ischemic neuronal death. Primary cortical neurons at days in vitro (DIV) 12 were subjected to oxygen glucose deprivation (OGD), an in vitro model of ischemic stroke, for different time periods (2–8 h). Oxygen glucose deprivation showed characteristic morphological changes of dying cells, OGD time-dependent induction of NP1 (2-4-fold) and increased neuronal death. In contrast, the NP1-KO cortical neurons were healthy and showed no sign of dying cells under similar conditions. NP1gene silencing by NP1-specific small interfering RNA (NP1-siRNA) protected cortical neurons from OGD-induced death. Conditioned media (CM) collected from OGD exposed WT cortical cultures caused neurotoxicity when added to a subset of DIV 12 normoxia control WT cortical cultures. In contrast, CM from OGD-exposed NP1-KO cultures did not induce cell toxicity in control WT cultures, suggesting a role for extracellular NP1 in neuronal death. However, NP1-KO neurons, which showed normal neuronal morphology and protection against OGD, sustained enhanced death following incubation with CM from WT OGD-exposed cultures. Western blot analysis of OGD exposed WT CM showed temporal increase of NP1 protein levels in the CM. Most strikingly, in contrast to NP1-KO CM, incubation of normal cortical cultures with CM from OGD exposed NP2-KO cultures showed neurotoxicity similar to that observed with CM from OGD exposed WT neuronal cultures. Western immunoblotting further confirmed the increased presence of NP1 protein in OGD-exposed NP2-KO CM. Live immunofluorescence analysis show intense cell surface clustering of NP1 with AMPA GluR1 receptors.ConclusionsCollectively, our results demonstrate that extracellular release of NP1 promote hypoxic-ischemic neuronal death possibly via surface clustering with GluR1 at synaptic sites and that NP1, not its family member NP2, is involved in the neuronal death mechanisms.

Highlights

  • Developing brain is highly susceptible to hypoxic-ischemic injury leading to severe neurological disabilities in surviving infants and children

  • We report that the extracellular secretion of neuronal pentraxin 1 (NP1) is required to induce neuronal death in primary cortical neurons subjected to oxygen glucose deprivation (OGD) possibly through co-clustering with APMA GluR1 receptors at synaptic sites and enhanced excitotoxicity

  • Induction of NP1 in primary cortical neurons exposed to oxygen glucose deprivation Primary cortical neuronal cultures at DIV12 were exposed to OGD for indicated times (2? 8 h)

Read more

Summary

Introduction

Developing brain is highly susceptible to hypoxic-ischemic injury leading to severe neurological disabilities in surviving infants and children. We reported induction of neuronal pentraxin 1 (NP1) in hypoxic-ischemic injury in neonatal brain and NP1 co-localization with the excitatory AMPA receptors GluR1 at the synaptic sites. ? 2014 Thatipamula and Hossain; licensee BioMed Central We report that the extracellular secretion of NP1 is required to induce neuronal death in primary cortical neurons subjected to oxygen glucose deprivation (OGD) possibly through co-clustering with APMA GluR1 receptors at synaptic sites and enhanced excitotoxicity. Our findings suggest that blockade of NP1 induction and its extracellular release may be therapeutically relevant against hypoxic-ischemic injury in neonatal brain

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.