Abstract
Cyclic AMP–Phosphodiesterases (cAMP-PDEs) catalyse the hydrolysis cAMP to AMP and thus serve to modulate the ligand→adenylate cyclase→cAMP→PKA signal transduction pathway. PDEs exist as a multigene family of enzymes that bear significant sequence homology in the catalytic domains. The sequence alignment of these domains has revealed the presence of two histidine motifs: motif I, HNXXH, and motif II, HDXXH. These amino acid sequences are canonical motifs, which act as ligands for divalent metal cations required for catalytic activity. In this paper, we report human monocyte PDE4A to be a zinc-binding protein. Substitution by site-directed mutagenesis of either histidine in motif I by serine, which is not a ligand for metals, results in complete loss of catalytic activity and loss of sensitivity to divalent metal cation activation. However, similar mutations in motif II gave proteins that retained both ∼50% of initial activity and the ability to respond differentially to Mg 2+, Mn 2+ and Co 2+. Moreover the motif II mutants exhibited both functional group requirements and retained their p K a values. When the inactive mutants were affinity-labelled with 8-BDB-TcAMP and probed with antibody against cAMP or antibody against PDE4A, Western blots were unaltered. These results show that the conserved histidines in motif I are an absolute requirement for catalytic activity, whereas motif II histidines are required only to achieve maximum activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.