Abstract

The present study was designed to identify the serotonergic pathway causing baroreflex inhibition associated with the defense reaction in rats. Under conditions that produce physiological responses typical of the defense reaction, electrical stimulation of the dorsal periaqueductal gray (dPAG) was found to double c-Fos immunoreactive serotonergic neurons within the mid-rostrocaudal extent of the B3 group (which comprises the raphe magnus and the lateral paragigantocellular reticular nuclei) in anesthetized rats. Local blockade of neuronal activity by microinjection of muscimol (a GABA(A) receptor agonist) directly into the B3 region prevented the inhibitory effect of dPAG activation on the cardiac baroreflex. Conversely, neuron activation by local application of D,L-homocysteic acid into B3 region caused baroreflex inhibition that was suppressed by microinjection of granisetron (a 5-HT(3) antagonist) into the nucleus tractus solitarius. These results show that activation of serotonergic cells in the mid-portion of B3 group is critical to trigger baroreflex inhibition occurring during the defense reaction evoked by dPAG stimulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call