Abstract

The current paper considers large galloping-like vibrations of circular cylinders, generically inclined and yawed to the flow. The case of a round section prone to galloping is seemingly a paradox since rotational symmetry (or close to it) and classical galloping are apparently contradictory. Still there seems to be a range of wind speeds far from those for typical Karman vortex shedding resonance where such a phenomenon does occur. Experimental results from both static and dynamic large-scale rigid cable models, presented here, show that this range coincides with the critical Reynolds number regime, where notable symmetry-breaking characteristics such as nonzero mean lift emerge. It is shown that a fundamental difference between the inclined and non-inclined cylinder aerodynamics may exist accommodating different pressure distributions and different resulting dynamic behaviours. Unsteady pressure measurements showing avalanche-like “jumps” and vortex dislocations building between cell structures in the cylinder spanwise direction are conjectured to be a key element in the unstable behaviour experienced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call