Abstract

This review identifies a critical problem in the fundamental physics of current climate models. The large greenhouse effect of rising CO2 assumed in climate models is assessed by six key observations from ground- and satellite-based measurements. This assessment is enhanced by statistical analyses and model calculations of global or regional mean surface temperature changes by conventional climate models and by a conceptual quantum physical model of global warming due to halogen-containing greenhouse gases (halo-GHGs). The postulated large radiative forcing of CO2 in conventional climate models does not agree with satellite observations. Satellite-observed warming pattern resembles closely the atmospheric distribution of chlorofluorocarbons (CFCs). This review helps understand recent remarkable observations of reversals from cooling to warming in the lower stratosphere over most continents and in the upper stratosphere at high latitudes, surface warming cessations in the Antarctic, North America, UK, and Northern-Hemisphere (NH) extratropics, and the stabilization in NH or North America snow cover, since the turn of the century. The complementary observation of surface temperature changes in 3 representative regions (Central England, the Antarctic, and the Arctic) sheds new light on the primary mechanism of global warming. These observations agree well with not CO2-based climate models but the CFC-warming quantum physical model. The latter offers parameter-free analytical calculations of surface temperature changes, exhibiting remarkable agreement with observations. These observations overwhelmingly support an emerging picture that halo-GHGs made the dominant contribution to global warming in the late 20th century and that a gradual reversal in warming has occurred since ~2005 due to the phasing out of halo-GHGs. Advances and insights from this review may help humans make rational policies to reverse the past warming and maintain a healthy economy and ecosystem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.