Abstract

AbstractWe study recurrence in the real quadratic family and give a sufficient condition on the recurrence rate $(\delta _n)$ of the critical orbit such that, for almost every non-regular parameter a, the set of n such that $\vert F^n(0;a) \vert < \delta _n$ is infinite. In particular, when $\delta _n = n^{-1}$ , this extends an earlier result by Avila and Moreira [Statistical properties of unimodal maps: the quadratic family. Ann. of Math. (2)161(2) (2005), 831–881].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.