Abstract

Renewable energy generation and storage requires specialized capital goods, embedding critical raw materials (CRM). The scarcity of CRM therefore affects the transition from a fossil based energy system to one based on renewables, necessary to cope with climate change. We consider the issue in a theoretical model, where we allow for a very costly potential substitute, reflecting a backstop technology, and for partial and costly recycling of materials in capital goods. We characterize the main features of the efficient energy transition, and their dependence on the relative abundance of CRM and on the recycling technology. Recycling reduces the cost of the transition. It also calls for having a large stock of recyclable CRM embedded in specialized capital at the time of adoption of the backstop technology. Moreover, we consider constraints on policy tools and myopic regulation, and show how abstracting from the scarcity of CRM, or tightly linking subsidies for renewables to the carbon tax revenue, is misleading in designing climate policy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.