Abstract
Small radius curved sections of two-lane secondary highways have low technical indicators, complex alignments, and frequent accidents. In order to improve the safety of traffic operation, the article investigates the curved sections of two-lane secondary highways with different radii and obtains the travelling speeds of different vehicle types at different section locations. By studying the trajectory characteristics and speed characteristics of vehicles travelling in curves, the velocity difference ratio, which responds to the continuity of driving speed, was defined. Then, based on this, this paper investigates the vehicle motion law of small radius curved road sections. The results show that the speed change of large cars in small radius curves is similar to a “U" shape, while the speed change of small cars is similar to a “V" shape. The speed adjustments of the larger cars occur mainly within the range of gentle curves, whereas the speed changes of the smaller cars are large throughout the range of curves. There is a significant exponential function relationship between curve radius and 85 % percentile speed, from which the curve radius threshold can be predicted. This provides a basis for engineering construction of curved road sections and optimization of curve design indicators, which greatly improves the traffic safety level of curved road sections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.