Abstract

The physical properties of ginkgo leaves extract(GLE) are the critical quality attributes for the control of the manufacturing process of ginkgo leaves preparations. In this study, 53 batches of GLE with different sources from the real world were used as the objects to carry out the research from 3 levels. First, based on micromeritics evaluation method, a total of 29 physical attribute quality parameters in five dimensions were comprehensively characterized, with a total of 1 537 data points. Further, with use of physical fingerprinting technology combined with similarity evaluation, the powder physical properties of 53 batches of GLE showed obvious differences from an overall perspective, and the similarity of the physical fingerprints was 0.876 to 1.000. Secondly, hierarchical clustering analysis(HCA) and principal component analysis(PCA) models were constructed to realize the reliable identification and differentiation of real-world materials produced by GLE from different sources. Multivariate statistical process control(MSPC) model was used to create GLE material Hotelling T~2 and squared prediction error(SPE) control charts. It was found that the SPE score of B_(21) powder exceeded the 99% confidence control limit by 22.495 9, and the SPE scores of A_1 and C_(10) powder exceeded the 95% confidence control limit by 16.099 2, realizing the determination of abnormal samples in the materials of GLE from the production in real world. Finally, the physical quality control method of GLE in the production process of ginkgo leaves preparations was established in this study, providing a reference for the quality control methods of ginkgo leaves preparations in their manufacturing process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.