Abstract
We analytically study the ground-state quantum phase transition between the Haldane phase and the large-$D$ (LD) phase of the $S=1/2$ ferromagnetic-antiferromagnetic alternating Heisenberg chain with on-site anisotropy. We transform this model into a generalized version of the alternating antiferromagnetic Heisenberg model with anisotropy. In the transformed model, the competition between the transverse and longitudinal bond alternations yields the Haldane-LD transition. Using the bosonization method, we show that the critical exponents vary continuously on the Haldane-LD boundary. Our scaling relations between critical exponents very well explains the numerical results by Hida.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.