Abstract

We investigate an epidemic spreading process by means of a computational simulation on the Apollonian network, which is simultaneously small-world, scale-free, Euclidean, space-filling and matching graphs. An analysis of the critical behavior of the Contact Process (CP) is presented using a Monte Carlo method. Our model shows a competition between healthy and infected individuals in a given biological or technological system, leading to a continuous phase transition between the active and inactive states, whose critical exponents β/ν⊥ and 1/ν⊥ are calculated. Employing a finite-size scaling analysis, we show that the continuous phase transition belongs to the mean-field directed percolation universality class in regular lattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.