Abstract

Cascading overload failures of transmission lines are one of the dominant factors that induce catastrophic blackouts. The reliability risk of cascading overload failures is significantly underestimated in traditional adequacy assessment studies. This paper proposes an evaluation model for the assessment of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N-k</i> contingencies as cascading overloading failures. The interactions between outaged lines in the propagation path are revealed with a multi-stage optimization problem. The objective function is to maximize the probability of the propagation path of cascading overload failures. Several linearization techniques are proposed to convert the nonlinear evaluation model to mixed-integer linear programming. A rolling search algorithm is adopted to improve the capability of the proposed model to evaluate high-order contingencies. The case studies on the IEEE 118-bus systems show that the proposed model enables the identification of critical propagation paths with probabilities that are a few orders of magnitude larger than those with the traditional method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.