Abstract
Given a planar domain $\Omega$, and an analytic function $f$, we describe the set of critical points for the solution $u$ of the semilinear elliptic problem $\Delta u = f(u)$ in $\Omega$, $u=0$ on $\partial\Omega$. For simply connected domains we establish that the set of critical points is finite while for non--simply connected domains we show that this set is made up of finitely many isolated points and finitely many analytic Jordan curves. Further results are given in the case that $\Omega$ is an annular domain whose border has nonzero curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.