Abstract
A large class of semi-Hamiltonian systems of hydrodynamic type is interpreted as the equations governing families of critical points of functions obeying the classical linear Darboux equations for conjugate nets. The distinguished role of the Euler–Poisson–Darboux equations and associated Lauricella-type functions is emphasised. In particular, it is shown that the classical g-phase Whitham equations for the KdV and NLS equations are obtained via a g-fold iterated Darboux-type transformation generated by appropriate Lauricella functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.