Abstract

We investigate the existence of multiple nontrivial solutions of a quasilinear elliptic Dirichlet problem depending on a parameter $\lambda>0$ of the form $$ -\Delta_pu=\lambda f(u)\quad\mbox{in }\ \Omega,\quad u=0\quad\mbox{on }\ \partial\Omega, $$ where $\Omega\subset \mathbb{R}^N$ is a bounded domain, $\Delta_p$, $1 < p < +\infty$, is the $p$-Laplacian, and $f: \mathbb{R}\to \mathbb{R}$ is a continuous function satisfying a subcritical growth condition. More precisely, we establish a variational approach that when combined with differential inequality techniques, allows us to explicitly describe intervals for the parameter $\lambda$ for which the problem under consideration admits nontrivial constant-sign as well as nodal (sign-changing) solutions. In our approach, a crucial role plays an abstract critical point result for functionals whose critical points are attained in certain open level sets. To the best of our knowledge, the novelty of this paper is twofold. First, neither an asymptotic condition for $f$ at zero nor at infinity is required to ensure multiple constant-sign solutions. Second, only by imposing some $\liminf$ and $\limsup$ condition of $f$ at zero, the existence of at least three nontrivial solutions including one nodal solution can be proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.