Abstract
Critical points at infinity for autonomous differential systems are defined and used as an essential tool. Rn is mapped onto the unit ball by various mappings and the boundary points of the ball are used to distinguish between different directions at infinity. These mappings are special cases of compactifications. It is proved that the definition of the critical points at infinity is independent of the choice of the mapping to the unit ball.We study the rate of blow up of solutions in autonomous polynomial differential systems of equations via compactification methods. To this end we represent each solution as a quotient of a vector valued function (which is a solution of an associated autonomous system) by a scalar function (which is a solution of a related scalar equation).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.