Abstract

The critical paths of a max-plus linear system with noise are random variables. In this paper we introduce the edge criticalities which measure how often the critical paths traverse each edge in the precedence graph. We also present the parallel path approximation, a novel method for approximating these new statistics as well as the previously studied max-plus exponent. We show that, for low amplitude noise, the critical paths spend most of their time traversing the deterministic maximally weighted cycle and that, as the noise amplitude is increased, the critical paths become more random and their distribution over the edges in the precedence graph approaches a highly uniform measure of maximal entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.